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Two-particle Approach to the Electronic Structure of Solids
I: Scattering in the Presence of the Coulomb Interaction

A. Gonis
Chemistry, Materials and Life Sciences, Lawrence Livermore National Laboratory,
PO Box 808, L-372, Livermore CA 94551

Based on an extension of Hubbard’s treatment of the electronic structure of correlated electrons in matter we
propose a methodology that incorporates the scattering oftf the Coulomb interaction through the determination of
a two-particle propagator. The Green function equations of motion are then used to obtain single-particle Green
functions and related properties such as densities of states. The solutions in two- and single-particle space are
accomplished through applications of the coherent potential approximation. The formalism is illustrated by means of
calculations for a single-band model system representing a linear arrangement of sites with nearest neighbor hopping
and an one-site repulsion when two electrons of opposite spin occupy the same site in the lattice in the manner
described by the so-called Hubbard Hamiltonian.

I. INTRODUCTION

The study of the electronic structure of matter can be viewed as comprising two distinct yet interrelated components:
Spectra - the energy distribution of the electronic states in a material and energies, a crucial factor in determining
ground-state properties, such as equilibrium volumes and structures, phase stability and evolution, magnetic behavior
and a host of other physical properties. Corresponding to these two components are two also formally distinet but
also interconnected formal frameworks: scattering theory and global self-consistency. Scattering theory, on the one
hand, is directed towards the determination of the states of the electrons as they move under the influence of the
external (local) fields of the nuclei (ions) in matter and their mutual interaction. Global self-consistency accounts for
the structure of the Hilbert space defined by the system of interacting electrons and its effect in determining which
states are available to the system. It follows that the application of scattering theory must be applied so as to account
for the features of the Hilbert space defined by the entire system of interacting electrons in a material, thus taking
into account both the effects of exchange (Fermi statistics) and correlation (Coulomb repulsion). Hence follow both
the practical and formal interconnection of spectra and energies on the one hand, and of scattering theory and global
self-consistency on the other.

The search for a theory that accommodates the requirement of a self-consistent treatment of scattering (in the sense
just described) in the study of electronic structure has a long history, going back almost as far as the very inception
of quantum mechanics. It is a search actively pursued to this day. It can be said that the modern formulation of the
problem grew out of a paper by Hubbard[1] in 1963 in which he set out a formal procedure for the study of so-called
strongly correlated electrons in matter focusing on the treatment of the scattering aspects of the problem. A year
later, Hohenberg and Kohn([2] published their seminal paper on density functional theory (DFT) that can be viewed
as the first attempt to account for both the scattering and self-consistent aspects of electronic structure within a
unified formal framework. Density functional theory was developed quickly following that paper with a number of
works[3-5] - much too numerous to attempt anything but a cursory review here - codifying its implementation within
the so-called local density approximation (LDA)[6-8] for the case of ordered, elemental solids[9] and ultimately alloys
characterized by chemical disorder[10, 11].

The success enjoyed by the LDA in providing deep insight in tracing the electronic basis of materials behavior can
hardly be overstated. At the same time, it is well known that the LDA can fail to give an accurate picture of physical
properties, such as spectra, and also energetics for a number of systems, especially ones in which correlation effects
are judged to play a prominent role. It is generally acknowledged that the shortcomings of the LDA derive from its
particular treatment of correlation effects. Consequently, a number of methodologies have been put forward[12-17] -
again space constraints preclude all but a short listing of such methods - directed at ameliorating one or another of
the disadvantages of the LDA. Most recent developments include the introduction and implementation of dynamical
mean field theory DMFT[18] and the coupling of that theory with the LDA[19], and self-consistent extensions[20, 21]
of the GW approximation. In spite of this great effort, however, the development of a unique formal framework that
accounts for both the scattering aspects and the global self-consistency requirement of the problem, and thus treating
spectra and energies within a unified formalism has remained illusive. One difficulty is the possible overcounting of
correlation effects when the Coulomb interaction is treated explicitly[14, 19] based on single-particle quantities, such
as wave-functions determined within the LDA and consequently contain an accounting of correlation effects.



The present work is a contribution to the study of electronic structure of matter presenting the first phase of a
methodology developed to satisfy the requirement of global self-consistency when treating the scattering aspects of the
problem. Tt is based on the formal concepts presented by Hubbard[1] although it departs from Hubbard’s treatment
by providing for the determination of a two-particle propagator describing scattering off the mutual interaction of two
particles. Thus, the scattering aspects of electronic structure are developed explicitly in the rest of the manuscript.
Also, it allows the treatment of both electrons and holes (absence of an electron) on an equal footing when determining
spectral properties. How the self-consistent part of electronic structure is to be taken into account is commented upon,
but will be presented in detail in a future publication.

The formalism proposed here is based on the calculation of propagators in two-particle space from which a single-
particle Green function can be obtained through a solution of the equations of motion of many-body theory[22-24].
The calculation of such propagators allows the treatment of the scattering caused by the Coulomb repulsion within
the context of canonical scattering theory, namely as the scattering of a wave by a field that is confined to the space
of wave propagation (external field). Thus, the Coulomb interaction is treated on a par with the scattering off the
potentials associated with the presence of ionic charges in a material. Further features resulting from the study
of two-particle Green functions will be discussed in connection with the treatment of the self-consistent aspects of
electronic structure to be presented in future work.

The computational aspects of the problem proceed along the following lines. First, a two-particle propagator is
determined describing the propagation of a single particle (either electron or hole) as it proceeds under the influence
of both ionic potentials and the Coulomb interaction with another particle (of opposite spin). Because the scattering
off the Coulomb potential depends on whether a particle encounters another particle or not on a given site of the
material, the problem is fundamentally one of disorder scattering, both at the two-particle and the single-particle level.
It can be addressed at both levels by implementing appropriate extensions of the coherent-potential approximation
(CPA)[10, 25 27], leading to a single-particle self-energy (here considered to be site-diagonal) that is complex and
energy dependent, and can be easily seen to posses the proper mathematical structure in the complex energy plane.

The developments presented below are based on the so-called Hubbard Hamiltonian (see following section). The
consideration of ab initio implementation will be taken up in a paper currently under consideration.

II. REVIEW OF HUBBARD’S WORK

The by now traditional Hubbard Hamiltonian can be written in the so-called tight-binding form,

H= Z €iCh Cio + Z t?;,jc:-rgc:jﬂ +U Z'n.i(,nia. (1)
.o 2
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Here, the operators (:Ia (¢ie) describe the creation (annihilation) of an electron of spin @ at site #, ¢; denotes the on-site
potential (site energy) at ¢, the quantities ¢; ; describe electron propagation between sites ¢ and 7, and U denotes the
Coulomb repulsion acting on two electrons of opposite spin when found on the same site. The symbol & denotes a
spin opposite to o. We consider the Hamiltonian in the last expression for the case of a single-band Spin-compensated
system (maximum occupancy two electrons per site and equal numbers of electrons of either spin.) We denote the
number of electrons per site, the so-called band-filling, by n. Then n/2 denotes the number of electrons of a given
spin per site in the material.

One property of the Hamiltonisn in the last equation must be kept in mind: it describes an inherently fluctuating
system because (away from the limits of a completely empty of completely full band) an electron can encounter either
another electron or a hole on site i, leading to scattering resonances whose strength and weight depend directly on
the number of electrons per site. In the following, this disorder-like aspect of the problem is handled through the use
of the CPA formalism, applied to both the propagation of waves in single-particle space and in two-particle space.

An expression for the Green function, G7;(2), for a particle of spin o at complex energy z can be obtained based
on the commutation relations of the Hamiltonian of Eq. (1) with various operators. From the relations[1],

[Cios H| = €i¢i0 + Z tijCjo + Uc:fﬁciacw (2)

and

[Mie, 1] = Ztij((::a(:jg — (:;r-a(;ig), (3)
iy



we obtain

(2 — €)GF(2) = bij + D twGF;(2) + UTTS,;, (4)
ik

where the quantity I'77 describes the motion of a single electron in two-particle space and itself satisfies the equation
of motion,

(z— e?)l"ff_’u = < g > 8; + UGS,
+ Ztik-rgﬁ;ij‘ + Ztik[rgic:_rkj - i’i’,m] (5)
ki kti

The last expression bears scrutiny. The quantity I'77; is denoted by I'Y; by Hubbard[1] and is defined as the Green
function << (’2-5(71‘5-0?:0-; c}a >> (for details, see the original paper by Hubbard.) Its equation of motion involves the

more general elements << czﬁqﬁrtk,,; (:;o >> of the two-particle propagator that is denoted by ffl y in the notation

used in the expressions above. As pointed out by Hubbard, the on-site nature of the Coulomb repulsion in the
Hamiltonian (1) leads to a closed form of the equation of motion for T'. In Hubbard’s treatment, matrix elements
other than [';; ;; were approximated by terms proportional to the single-particle Green function, Gy;. In what follows,
we pursue a solution for the matrix T' and obtain the single-particle Green function form Eq. (4).

Note the similarity in the structure of the terms involving electron hopping in Egs.(3) and (5). In the former, they
describe the hopping of an electron, spin ¢, between two different sites. In the latter, they describe the hopping of
an electron of spin o, the electron whose motion is explicitly being studied by these equations, between sites ¢ and k
while an electron of opposite spin remains on site . The last term in Eq. (5) describes the propagation of an electron
of spin @, (the “other” electron), between sites i and k while the electron of spin o, the one whose motion is described
by GY; propagates between sites ¢ and j.

The last expression shows that the equation of motion for the propagator I' forms a closed expression in the space
of two particles, and can be solved by matrix inversion in that space. The corresponding matrices take the following
form:

Let R; be the physical space defined by electron ¢, i = 1,2, and let I(;) denote the identity operator in that space. Let
also H(; denote a Hubbard-like Hamiltonian, Eq. (1), for electron é, and let 7;) denote the kinetic energy operator
(whose matrix elements are given by the #;;) for electron i. The Hamiltonian describing the motion of a single electron
in the space of two particles in the absence of inter-particle interactions is now given by the expression,

HY\ o) = H1 ® I3y + T2y ® L), (6)

where the superscript 0 denotes the vanishing of the interaction U, and the subscript (1,2) denotes a Hamiltonian in
two-particle space. With U set equal to 0, the matrix elements of the quantity

FD(Z) =[z— H?L,z)]ila (7)

are obtained directly from Eq. (5) (with U =0.)

The space of Hyy oy is the tensor product Ry ® Rp. Each site in this space signifies a possible encounter of two
electrons of opposite spin giving rise to a potential U, the chance of such an encounter depending on band filling.
Because of this, U can be viewed as a site-diagonal, external random field in the space of I'. With this in mind, we
can write,

T(z) = [z — HY ) + U7, (8)

for the matrix representing the motion of an electron in two-particle space in the presence of the interaction U.

The chance of encountering a scattering potential U on a site depends on band filling (average number of electrons
per site), n. For example, a filled band (in a single-band system) corresponds to n = 2, and a half-filled band to
n = 1. Correspondingly, the number of electrons of a given spin per site equals n/2 = 1 and n/2 = 0.5 in these two
cases.

A simple example may serve as illustration of the points made above. In the so-called atomic limit, (vanishing t;;),
and considering that the on-site energies ¢; are independent of site index, one finds[1],

1—mn/2 n/2
z—€ +zfer

GZ,(Z) = 6ij{

b 9)

We are now ready to consider the treatment of the general case of non-vanishing interaction and away from the atomic
limit. This can be done most conveniently by rewriting the last expression, and re-interpreting the resulting form.



A. Particles and holes

The last equation gives the spectrum of the single-particle propagator as consisting of two parts centered at reso-
nances at energies € and € + /. The resonance at € corresponds to the non-interacting part of the system while that
at € + U to the interacting part. The equation can be recast so as to describe the occupied and unoccupied parts of
the spectrum (respectively ground and excited states) and yield a symmetric description of both electrons and holes.

Shifting the zero of energy to U/2, we can write the last equation in the form,

1—n/2 n/2
z—e4+U/2 z2—e-U/2

G7(2) = 045 2 (10)

We can now interpret the resonance at the lower energy —U/2 as corresponding to the occupied (ground) states in
the system, while that at the higher energy U/2 corresponds to the excited states. In this interpretation, a particle
can signify either a hole (at the lower part of the spectrum) or an electron (at the upper part). In other words, the
ground state is the part of the spectrum in which states are filled and thus holes can be created through the removal
of an electron. Correspondingly, the excited states are empty so that an electron can be created there. We name the
parts of the spectrum according to the kind of particle that can be created, so that the ground state corresponds to
holes and the excited states to electrons.

The most significant part of the interpretation just given is that the notion of a single particle encompasses both
electrons and holes, and can be used to provide an equivalent description of electron and hole propagation in the
system. We can think of the distinetion as being associated with the scattering potential encountered by a single-
particle wave as it propagates through single-particle space (here in the atomic limit.) The wave scatters off —U /2, and
yields a sub-band associated with the ground (hole) states, or can scatter oft U/2 yielding a sub-band corresponding to
the excited states. It is easily seen that this description satisfies all limiting requirements, yielding exact expressions
in the non-interacting and atomic limits.

The language used in the previous paragraph can be connected to the discussion of electrons in a substitutionally
disordered alloy, described, for example, by a Hamiltonian of the tight-binding kind. In the alloy case, a wave
representing an electron propagates through a medium characterized by the presence of potentials whose strength
varies from site to site according to some statistical distribution. A disordered binary alloy A.Bi_., for instance, can
be modeled as a random distribution of scattering potentials (on-site energies), ea and eg over the sites of a lattice
with corresponding probabilities ¢ and 1 — ¢.

Similarly, a single-particle wave can be considered as propagating in a space characterized by potentials whose
strength and weight vary according to the energy region and band filling (that now plays the role of concentration).
Although the physical content of the alloy description is quite different from that of the desecription of electron and
holes in an interacting system, the formal similarity between the equations used in these descriptions allows the use of
methodology employed in the study of alloys to the case of interacting electrons and holes. The practical ramifications
of this statement are set forth in the following section.

III. THE CPA IN TWO- AND SINGLE-PARTICLE SPACES

The coherent potential approximation (CPA)[10, 11, 25, 26] is well known in the study of alloy physics. It represents
arguably the most satisfactory approximation scheme for the study of disorder, in terms of its analytic properties,
satisfaction of various sum rules and its behavior in various physical limits. The formal aspects of the method are
the subject of innumerable writings and are well known. It suffices to say that the method is applicable to alloys of
an arbitrary number of constituent species where it yields sub-bands associated with each one of these species. It is
this particular feature that is exploited in using the CPA to study wave propagation (particle propagation) through
a system described in terms of electron and hole scattering.

A. Coherent Potential Approximation

The scattering off particle configurations is statistical in nature requiring a treatment of a wave scattered by a
random field. This treatment can be provided by means of the coherent potential approximation[25, 26] both in
two-particle as well as in single-particle space. In both applications, the analogy to the case of ordinary alloys plays
an instructive role.

A single-particle wave (in single-particle space) propagates from site to site being scattered there by the potential
corresponding to the occupation of the site by either electrons and/or holes. That potential fluctuates because the



occupancy of a site changes as electrons hop on or off. Our aim is to approximate the scattering off the various sites
by means of an effective field obtained through the CPA.

The CPA self-consistency condition in single-particle space requires the study of two-particle propagators, as de-
scribed in Eq. (4) and (5). Correspondingly, a solution for I' is to be obtained through the CPA in two-particle
space.

B. CPA in two-particle space

A wave described by the propagator of lq. (8) scatters off the possible configurations of a site in the lattice that
now appear as local external fields. In this description, all sites in the space of propagation of T' are equivalent,
thus yielding a medium that is translationally invariant, each providing a random scattering field: When the site is
occupied by two holes, it is assigned a scattering strength of —U/2 with a weight (probability or concentration) of
(1 - n/2)? Similarly, a configuration containing an electron and a hole provides scattering at energy 0, with a weight
of 2(1 — n/2)n/2, while the presence of two electrons provides a scattering strength of UU/2 with weight (n/2)?. The
use of the CPA condition[25, 26] applied to a ternary alloy yields an effective medium of propagation characterized in
two-particle space by a site-diagonal self-energy, ¥(?), and gives three components of the quantity I': T'(—U//2), T'(0)
and I'(U/2).

Letting o denote the various scattering strengths, and n, the corresponding weights (probabilities) the self-
consistent equation determining an effective two-particle propagator is expressed in terms of the site-diagonal elements
of I and takes the form,

Too00(2) = D nalGy00(2). (11)

Here, the individual components I'fj ., take the form,
To00(2) = [z —a— AB)7! (12)

where the so-called renormalized interactor[27], A}, describes the interaction of a site in two-particle space with the
surrounding medium that is in turn characterized by a self-energy, £(%). The approach to the self-consistent solution
of the CPA equations is based on the site-diagonal element of the two-particle effective medium propagator written
in terms of the corresponding self-energy,

Coo,00 = fdkd‘l[z - 2® - §(k) - S(q)] ', (13)

where the structure factors S(k) and S(q) are the structure factors (Fourier transforms of the hopping terms) for
each of the individual single-particle spaces forming two-particle space. (In the case of single-band systems, such as
those discussed in the section of numerical applications, the last expression involves strictly scalar quantities and is
correct as it stands. For the case of systems characterized by multiple bands, the structure factors must be properly
rotated vertically with respect to one another using the appropriate rotation transformations in two-particle space.)

The determination of T' and of the various I'™ allows the use of the equation of motions, Eq. (4) and (5) in
determining the single-particle Green function.

C. Single-particle Green functions

The site-diagonal elements of the single-particle Green function can now be determined through Eq. (4) applied
to the components Ioo.00(—U/2) and oo00(U/2) (there is no direct coupling to the scattering at zero energy.) This
gives two components for the single-particle propagator (with all indices suppressed,)

G(£U/2) = G[1 + ((U/2))T (£(U/2))], (14)

where G denotes the single-particle propagator in the absence of the interaction.
The site-diagonal part of the single-particle Green function describing both the electron and hole parts of the
spectrum is now given by an average over band filling (CPA averaging),
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FIG. 1: Non-interacting densities of states in single-particle (left panel) and two-particle space (right panel) for
a single-band system on a linear chain with nearest neihbor hoping. The DOS in two-particle space corresponds
to a finite square of 16 sites with periodic boundary conditions. The vertical lines denote the edges of the
bands in single-particle (left panel) and two-particle space (right panel), respectively.

This is the CPA equation corresponding to a two-component alloy with a fundamental difference from the form that
it takes in the case of ordinary alloys. Now, the calculation of the single-particle Green function corresponding to
each subspecies (scattering by holes or electrons) is to be determined throughout the prior calculation of a propagator
in two-particle space.

It is easily shown that the matrix elements G;; corresponding to scattering by an electron or a hole can be written
in the form,

z—A

G(xU/2) = [z = A = (£U/2) —xm

! (16)

where the quantity A is the renormalized interactor in single-particle space. This expression makes clear the manner
in which the interparticle interaction couples the single-particle and two-particle spaces.

As in the case of the ordinary CPA for disordered alloys, a site-diagonal self-energy (1) can now be caleulated by
noting that the site-diagonal elements of the effective single-particle Green function can be obtained as an integral,

Galz) = / dk[z — £ — §(k)] 1, (17)

which can also be written in the form,
Gulz) = [z —zW — A7, (18)

These equations can be iterated to yield a single-particle self-energy Y. The equation to be iterated for £(1 can
be written in the form,

M =z - AW -G (19)

The results of numerical applications of these equations are reported in the following section.

IV. NUMERICAL RESULTS

The formal considerations presented in previous sections have been applied to model systems corresponding to a
linear chain with nearest neighbor hopping, set equal to one in arbitrary units, ¢+ = 1, described by the single-band
Hamiltonian shown in Eq. (1). The site energies are set equal to zero throughout.
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FIG. 2: Densities of states in two-particle space (4x4 square) for various values of the interaction as indicated.

The left panel of Fig. (1) shows the single-particle density of states (DOS) vs. energy for a single-band model
system on linear chain with nearest neighbor hopping (set equal to one) in the absence of the interaction, U = 0. It
is well known[28] that the DOS for such a system are given by the expression,

ok
n(E) = Jmﬁ, (20)
and exhibit inverse square root singularities at the band edges, £2¢ = +2 (as indicated by the thin vertical lines).

In all calculations a small imaginary part was assigned to the energy so as to enhance convergence of the self-
consistent equations. Because of this, the singularities at the band edges are smoothed over and the DOS exhibits
tails that decay exponentially into the regions below and above the band edges.

The two-particle space corresponding to the infinite linear chain with nearest neighbor hopping is an infinite square
with nearest neighbor hoping. For ease of calculation, the infinite square has been approximated by a square of finite
size, with four sites on a side and periodic boundary conditions. Total DOSs in two-particle space are determined
from the imaginary part of the site-diagonal elements [gg.gp. The spectra corresponding the finite, 16-side square at
U7 = 0 are shown in right panel of Fig. (1). We note that the edges of the band occur at +4f = +4, and the spectra
are thus twice as wide as those of the single-particle case shown in the panel on the left. Again, sharp features in the
DOS have been smoothed over because of the assignment of a small imaginary part to the energy.

In the case of a finite interaction, the structure develops into three sub-bands, one for each of the scattering
strengths, —U//2, 0 and U/2, whose weights, in the case of half-filling are 1/4, 1/2 and 1/4, respectively. As indicated
in Fig. (2) these sub-band are clearly separated for large enough values of U, each having essentially the same overall
shape as the non-interacting band in right panel of Fig. (1), but with disorder smoothing over the structure of the
bands with increasing U.

Figure (3) shows the evolution of the single-particle DOS with increasing value of the on-site interaction U at half
filling, n/2 = 0.5. In this case, the Fermi level is at £ = 0.0.

We note that increasing U causes the appearance of side bands above and below the central structure whose weight
diminishes as these sub-bands are pulled further and further apart. For large enough values of the interaction, two
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FIG. 3: Densities of states in single-particle space for a half-filled single band model system on a linear chain
with nearest-neighbor hopping and for various values of the interaction as indicated.

well-formed sub-bands appear, symmetrically arranged about the center of the gap region between them. These are
the well-known Hubbard sub-bands whose structure bears close scrutiny.

First, it is noted that the bands are somewhat wider than the DOS for the non-interacting case, left panel in Fig. (1),
their width approaching that of the two-particle spectra, right panel in Fig. (1). We also note the general structure
of the sub-bands reflecting that of the two-particle DOS, right panel in Fig. (1). These features arise because of the
direct dependence of the single-particle Green function on the two-particle propagator, as exhibited in the equations
of motion. This dependence causes the gap to form when the strength of the interaction essentially exceeds the width
of the two-particle spectrum (although the effective width of the single-particle sub-bands is somewhat smaller than
that of the two-particle DOS.)

Also, we note the central peak (at £ = 0) that persists even when the gap is fully formed. Its presence can be
traced to a scattering resonance at £ = 0 in two-particle space. Even though the single-particle Green function does
not couple directly to that scattering mode, the modes that it does couple to, namely +U /2, carry information about
the scattering at £ = 0.

This resonance corresponds to the so-called quasi-particle peak observed in photoemission spectra near the Fermi
level in strongly correlated systems, and interpreted to correspond to a quasi-particle at zero energy. This peak should
disappear once the gap is formed, although it persists in the results exhibited here. This behavior can be understood
along the following lines.

In an exact treatment of a correlated system (such as the one treated here), configurations associated with scattering
strengths £U/2 are directly coupled to one another through the hopping of a single particle (electron or hole) from site
to site. Thus they form sub-bands whose structure reflects that of the non-interacting system. Scattering resonances
at £ = 0 do not couple to one another especially in the case of a half-filled band. The hopping of electrons or holes in
one such configuration cannot lead to another at the same scattering resonance but must proceed through coupling
to the resonances at +U/2. In this sense, the resonances at £ = 0 act in the manner of isolated impurities in a host
material, their width arising through hybridization with resonances near them in energy.

For sufficiently small values of U, this hybridization has enough strength to provide an observable width to the
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FIG. 4: Densities of states in single-particle space (solid curve) and for two-particle space, represented here by a
4x4 square (dashed curve), for a nearly empty single band model system on a linear chain with nearest-neighbor
hopping and for [/ = 2.0.

resonance at £ = 0. As U increases (essentially moving outside the spectrum of two-particle states), hybridization
decreases rapidly with the ultimate effect the disappearance of the resonance once the gap is formed.

This exact behavior cannot be reproduced exactly within the CPA formalism used here for two reasons: First, the
present application does not distinguish between resonances coupled to one another from the isolated ones that do
not. Also, the finite imaginary part assigned to the energy provides an effective hybridization that persists even when
the gap is fully formed.

Finally Figs. (4) and (5) exhibit single-particle spectra for the case of nearly empty band, n/2 = 0.01, and for two
values of the inter-particle interaction | = U/2| = 2 and | £ U/2| = 5. It is seen that now the spectrum lies almost
exclusively in the unoccupied part, as expected. Also, for the smaller value of the interaction, it is essentially identical
to that of the non-interacting spectrum, while it approaches closely that of the two-particle spectrum at the larger
value, U/2 = 10.

In the case of a half-filled band, the Fermi level lies at 2 = 0. In cases deviating from that of half filling, the Fermi
level is to be determined by integrating over the spectra until the value of the integral reaches the pre-assigned value
of n.

V. GLOBAL SELF-CONSISTENCY

The formalism in the previous section was directed at the caleulation of spectra (DOSs) in the presence of the
Coulomb repulsion described within the Hamiltonian of Eq. (1). It was shown that the calculation proceeds in two
steps, both based on the application of the CPA, first in two-particle space and subsequently in single-particle space
relying on the results of the prior calculation. This procedure provides a self-energy that reflects only Huctuations
at the level of two particles (and ultimately a single particle) and does not take into account the presence of the
remaining particles in the system.
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FIG. 5: Results analogous to those of the previous figure but for U = 10.0.

Global self-consistency refers to a procedure that would allow the study of scattering processes in matter in a way
that captures the structure of the Hilbert space determined by the system as a whole. Density functional theory
(within it LDA implementation) provides for such self-consistency within the level of a single-particle. DFT can be
viewed as a prescription for embedding a single electron (the space of a single particle) in a medium that acts on the
particle be means of an appropriately defined, albeit approximate, potential. This is the potential obtained in LDA
caleulations that includes the Coulomb interaction between a single particle and all other particles in the system, and
also the exchange correlation potential.

Treatments based on the traditional form of DFT/LDA (within single-particle space), however, suffer from the
limitation arising when the scattering off the Coulomb interaction, a potential fully defined only within two-particle
space, is approximated by means of scattering off a real potential confined to the space of a single particle. Thus,
they are likely to miss-represent both the position and the shape of the resonances arising because of the scattering
by the Coulomb field.

It has been suggested[29-31] that the formal framework of DFT be extended to two-particle densities in order to
account for the Hilbert space in the study of scattering in two-particle space. One could expect that such a treatment
might improve both the position and the shape of scattering resonances leading to a more accurate determination of
spectra than is afforded by current applications. Through the determination of a density in two-particle space, it would
also remove the difficulties associated with the so-called self-interaction problem that arises in current implementations
of DET/LDA. The generalization of DFT/LDA may also be useful in providing an effective termination of the Green
function equations of motion that would emerge in a treatment in which the Coulomb repulsion is assigned its full
range rather than being restricted to an on-site form.

The practical application of two-particle DFT hinges crucially on the determination of a corresponding exchange-
correlation potential, and work aimed at the determination of such a potential is currently underway.
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VI. DISCUSSION AND CONCLUSION

The calculation of electronic structure of matter hinges on describing the effect on the electron gas produced by the
fields set up by ionic charges in a material and the mutual interaction among the electrons (Coulomb interaction).
This description is to be carried out in a way that captures the structure of the Hilbert space defined by the entire
system of electrons and nuclei.

One obstacle in obtaining an accurate description of the scattering aspects of the problem (even in the absence
of self-consistency) is the study of the scattering off the Coulomb potential carried out by means of a real potential
confined to single-particle space. The formalism presented in this paper provides for a treatment of the scattering off
the mutual interaction between two particles within a two-particle space in which this interaction appears as a local
external field. Tt is thus amenable to treatment by means of ordinary scattering theory.

The approach developed above is based on the formalism originally developed by Hubbard[1] but extends that
formal approach to incorporate the solution of a two-particle propagator directly, and subsequently obtain the single-
particle Green function by means of the Green function equations of motion. The resulting methodology allows a
fairly straightforward interpretation and explanation of a number of features, such as the position and shape of the
spectra, of the DOS associated with an interacting electron system. It also allows the equivalent treatment of particles
and holes in the system, and the determination of the relative weights of occupied and excited states depending on
bandfilling (number of electrons per site).

It remains for future work to provide the incorporation of the ideas presented here into a globally self-consistent
methodology that would account for the presence of all electrons in the system.
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